Trolls Go Round And Round

What appears to be the one absolute and unsurprising fact in this industry — someone is always out to try to take a bite out of you. Or try to get their friends to come after you so they are not seen as participating. What is surprising (or maybe amusing?) is how they like to come at you at times. It would be a much more entertaining read if they had some understanding about the things they were frantically smashing into their keyboards. Unfortunately — it’s quite clear they have little to no experience in anything but slinging mud. I cannot help but just shake my head and go back to helping my customers paying for my time.

Fortunately, I had the time and opportunity to bring up a few examples — had a 2014 Civic Si on the dyno to tune and it turned out to be a chance to touch base on the results of tuning a stock 9th gen Civic as I still get asked about it a lot.

Oh That VTC Mapping Is Such Shit!

This one really gets me. When someone doesn’t understand why something in a tune was done the way it was — it’s clearly shit. Their first reaction is to grab their pitchforks and torches when it should be to pause and analyse why something was done the way it was.  I see this attitude frequently and can only wonder if someone like this would ever take any advice or constructive criticism thatuned_vtct could help? If something is truly “shit”, lay out why in intelligent fashion — and no, not just a dyno sheet or 3hp. Or switching gears on the dyno and claiming you made power with your “tune” when all you’ve done is introduce another variable that just made any use of the baseline invalid. We’ve made 6hp on some 9th gens just by letting it sit and cool off . Not even the best troll attempt I’ve seen — but cute, I guess?

A truly good example is a tuned VTC map — particularly the low cam (non-VTEC). Low cam was tuned to determine the best cam advance, and then high cam was tuned to determine the best cam advance. Finally the transition was optimized to provide the best curve possible when going into VTEC during a full throttle pull. Optimal power at 5000 rpm out of VTEC was with 5* VTC — however it was 35* VTC in VTEC at 5000 rpm for optimal power. So what happens when VTEC engages and you have such a large VTC transition? The VTC system is still at 5* and the motor makes less than optimal power until the cam has a chance to move to 35* VTC. As a result the transition was optimized by a very short and quick snap from 8* at 4900 rpm to 32* at 5000 rpm while VTEC is still off — a very smooth transition when at WOT and no loss of power is seen or felt. If you don’t see this difference on tvtec_diphe dyno — time to replace your piece of shit roller (hah, I just went there).

What does this look like on the dyno? The graph at the left illustrates this. Solid lines are horsepower and torque with the VTEC “pre-phasing” trick done, dashed lines are without. Pretty obvious torque dip at VTEC, right?

Wait, if this is so good, why are you telling everyone about it? Because this is not a secret. When the K series first came out Hondata pioneered this trick and published it publicly for EVERYONE to use. The irony here is — very few use it, and even less understand why. It’s a better idea to just go on the Internet and make it obvious you’ve done like two Honda K series vehicles and now you’re an expert? More like wet behind the ears.

Hold on, it gets better… you know even *Honda* uses this trick now? Juhonda_vtcst look closely at the stock Honda 9th gen tune. For the two seconds it takes to see it — it’s not tough. They didn’t use this on the RSX’s or the 8th gens — and their use of it is very subtle on the 9th gen.

I’ll be Mr. Nice Guy — to the right is the stock 9th gen VTC map. Note the values at 5000 rpm at full throttle — they go back up slightly in anticipation of the VTEC crossover (which is 25 at 5000 rpm in VTEC on the stock Honda tune) — the only difference is they didn’t use a 4900 RPM break point as they really don’t care if the car loses 4hp across 500 rpm worth of power from running 7-9 degrees too much VTC (I guess they haven’t met the experts on the internet yet?). Yes, Honda intentionally mapped the motor this way — there is absolutley no reason to bring the VTC back up in an area it naturally wants to taper down to keep making power on the low cam.

Shocking, I know.

I Did Such And Such And Made More Power

LOL.

Let me repeat.

LOL.

Tuning is about so much more than making power. I have customers with 150k+ miles on their turbo vehicles. I also have a dyno at the shop readily at my disposal. I know what makes power — in fact I use the dyno not only for tuning customer’s vehicles and builds at the shop, but as an R&D tool and apply what I discover into our eTunes to help deliver reliable cars for customers around the world.

Part of tuning is making decisions and judgement calls that will ultimately determine a setup is reliable long term — or not. In varying conditions year round — that the tune has to take into consideration and adjust for. This is why people go to reputable and experienced tuners, instead of a random guy offering you tunes for $50? Right? Maybe I’m wrong, what do I know?

So About That Stock 9th Gen?

I’ve posted several comparisons of stock 9th gens. I always answer — yes there are benefits, it will make a bit more power, and the power will be more consistent.

Here is the simple and visual example of this. The engine coolant temps (ECT) where 185-188 degrees F and intake air temps were 59-60 degress F on the stock tune baselines. Yes, I made sure these were consistent to avoid any extra variables when doing the comparison — if you’re paying someone 60 bucks for 3 baseline pulls I can tell you with absolute certainty they are not paying attention and simply don’t care. Yes it does matter — I’ve had customers datalog their baselines and in some situations there’s not even a dyno fan on the car — I’ve seen 20-30 degree difference in ECT (180 and 210…) and even a 30-40 degree swing in air temps between pulls. If someone thinks it “doesn’t matter” — they should not claim to be any kind of EFI tuning specialist.

Astock_comparisonnyway… stock pulls. Three pulls with consistent conditions. Left graph is torque, right graph is horsepower. Quite the difference on the top end right? 10-12 HP swing in some spots. Yes, the stock Honda tune is very inconsistent in it’s power delivery — and no it is not the “knock control” as some would make you believe. The simple answer is just this: emissions.

Ncomparisonow four (yes four) pulls with consistent conditions — 185-188 degree ECT and 68-70 degree IAT. A negligible .5-1.2hp swing. Virtually nothing. This is on a dyno that is accurate to .1hp (no, a roller dyno does not nearly have this kind of accuracy — having a wheel/tire on the car can cause a 2-4hp swing).

finalAnd as every tuner in the world loves to do and not tell everyone… we overlay the highest “tuned” graph with the lowest “baseline” graph. This behavior should come as no surprise — as a ton of “tuners” make a living off nothing more than the way their dyno reads (big numbers sell tunes and that means you’re the best right? Hm… I’ve got some graphs I can post… no, I probably shouldn’t go there).

final_bestWhat’s it look like if you overlay the best “tuned” and the best “baseline”? Pretty good gains still.

And now I’ve run out of thinks to rant about…

Tested: Full Race Catless Downpipe for 2012+ Civic Si

A frequent question that gets asked is “What downpipe makes power on my 9th gen?” I have gotten in the habit of simply directing people to Full Race Motorsport’s website as we use their catless downpipe & exhaust on our supercharged vehicle, and I know the setup makes power.

Now here’s empirical evidence that it does.

Philippe was down at the shop and had us install the Full Race catless downpipe before I tuned his 2012 Civic Si. The vehicle came in with the following modifications on it already:

  • Invidia Q300 Exhaust
  • HPS Intake Hose
  • K&N Drop in Filter

Now from previous baselines of completely stock 2012 Si’s, I know they do about 160-164whp on our shop Dynapack. Before we installed the downpipe we baselined the car as it arrived. Sure enough, it did about 162whp with the power curve I’m used to seeing on a stock 2012 Si. This leads me to make the following conclusions:

  • The HPS intake hose and K&N drop in filter do absolutely nothing. Pretty pointless modifications and honestly a rip off (spend your money elsewhere).
  • The Invidia Q300 is a nice sounding exhaust, as always, but does not make any power, at least not without a tune. Maybe this will change with a tune?

We installed the catless downpipe, and put the car back on the Dynapack and randp_vs_nodp a couple more baseline pulls on the stock tune. The results are as follows — solid line is with the downpipe installed, dashed is before the downpipe.

We netted as much as +10whp and +10wtq from simply installing the downpipe. That’s a sizable gain for a simple modification.

tuned_dpNow let’s throw a good tune on the car… and the results are as follows. Solid line is fully tuned, dashed line is our baseline with the downpipe installed. The tune netted as much as +12wtq in spots and as much as +18whp on the top end.

dp_tuned_vs_nodpWhat’s this look like over the original baseline before the downpipe was installed? Here you go. Netting almost +30whp in spots with a downpipe and tune on the top end. Sizable gains, the part worked well and the tune brought it all together.

How does the exhaust factor into the power curve? Until I do a fair comparison of an exhaust swap on the car I can’t say with absolute certainty. However, we do know what other parts do make power already — A CAI nets 4-5whp, which would put this car around ~190whp, which is about 3-4hp shy of what the average 2012 Si maxes out with using bolt ons on this Dynapack dyno. So to make an educated deduction — an exhaust may net 3-4hp and maybe some mid range torque due to the ability to adjust the variable valve timing on the motor. It also seems that a 3″ exhaust would be the way to net any power at all, and anything smaller may not net any gains. With the integrated exhaust manifold design on the 9th gen cylinder head, the gains we’re used to seeing with a 3″ exhaust on previous K series engines don’t really hold true on the K24Z7.

Safe to say — if you want PROVEN performance, a good catless downpipe (Full Race works well as I’ve shown) and a good tune will get you 95% of what you’re going to get N/A with bolt ons. A cold air intake will net some power as well — and the exhaust is a wash at this point it seems.

2012+ Honda Civic Si RBC Intake Manifold Test

Introduction

There has been an ongoing debate about the pro’s and con’s of swapping the 8th gen Civic Si intake manifold onto the 9th gen Civic Si without any real concrete testing. Just butt dyno reviews, bromancing and numbers being thrown around with no context. So basically your average day on an enthusiast discussion board.

We’ll be having none of that here — I requested a 2012+ Civic Si that had a Full Race exhaust and Full Race 3″ catless downpipe, running the stock intake as our “base” to start from. We also got the the PRL SRI for the stock IM & RBC so that testing would stay consistent — and we tested the PRL SRI before installing the RBC IM.

So in short the testing involves:

  • PRL SRI on stock intake manifold.
  • RBC intake manifold w/ PRL SRI (to see difference over stock manifold).
  • ZDX throttle body.

Now the ground rules are simple:

  • The vehicle must be fully retuned after each major modification change on the vehicle.
  • No “snorkel modding” the intake out of the engine bay to artificially reduce intake air temps (reducing air temps will indeed increase HP — the goal of this test isn’t to show you this). The goal is consistent and realistic testing (particularly to demonstrate differences from mod to mod).
  • Two to three pulls are done on the “final” tune to ensure the engine has “settled” and the pulls are consistent between attempts — maintaining this requirement ensures comparisons between the various mods we are testing are consistent.

Long and productive Saturday: eight hours without the car leaving the shop dyno and over 70 dyno pulls later, we had concluded testing.

Now on to the results.


 

Stock tune vs VitTuned

stockintakeThis is how the car came in today. Equipped only with the Full Race 3″ Exhaust and Full Race 3″ catless downpipe.

stock_vs_tuned_stockintake_im

I baselined the car on the stock tune and we got just shy of 180whp (the dyno baselines 162-165whp for a bone stock 2012 Si). Not bad at all for two simple exhaust bolt ons. The stock intake had been retained and this example demonstrated why I recommend keeping the stock intake if you can’t afford FlashPro/Tuning yet — the car actually runs mostly OK with the factory airbox on the vehicle. Obviously doesn’t make “best power” for the mods, but the car drives and performs well day to day.

I proceeded to fully tune the car — and the power went up nicely with a cleaner power curve throughout the rev range, stopping just shy of 190whp — with gains of 11-14whp through the top end over the factory tune.


 

Stock intake vs PRL SRI

prlsri_stockimI proceeded to install the PRL Motorsports short ram intake (SRI) on the vehicle. Fitment was perfect and install of the SRI was a breeze — requiring only a couple of basic tools.prl_sri_vs_stock_intake_stockim

Back to the laptop I went and more tuning commenced. I was pleasantly surprised by the solid low end gains from 1700 rpm til 2500 rpm — as much as 12 ft lbs of torque to the wheels will definitely be something you can feel during normal stop and go driving. Slight loss from 2750 rpm to 3000 rpm though — nothing major. And no real gains until after ~ 5700 rpm, with a maximum of 4.5whp was had from 6750 rpm til 7000 rpm. Not a bad gain for a simple mod — I’ve seen much worse performance from some intakes on this platform (worse than stock intake at times).


 

And now the RBC intake manifold!

prlsri_rbcimOn to what we’ve all been waiting for! I dug back into the engine bay and worked on installing the RBC intake manifold PRL graciously supplied for testing — as well as their adapter for the kit. This install is a bit more involved than the SRI and required a larger variety of tools — and about 2-3 hours of shop time to install.

Once the intake manifold was on, the RBC IM version of PRL’s SRI was bolted up and the coolant system was burped. This step is very important — the coolant system must be properly burped. I’ve had customers send me datalogs with 280 degree Fahrenheit coolant temps after doing work on the car that involved draining the coolant system — which just guarantees a blown head gasket and very costly repair. I recommend using this kit, or something similar, to assist with purging the coolant system of all air: Spill-Free Funnel.

Back to the laptop I went for another session with the Hondata rbc_vs_stockim_prlsri_on_bothFlashPro. And here are the results!

  • Below 2100 rpm there is as much as 12 ft lbs of torque lost when using the RBC intake manifold.
  • From 2100 to 3500 rpm there are minor torque gains (1-6wtq) when using the RBC intake manifold.
  • From 3650 rpm until 5750 rpm there is nothing but bad news when using the RBC intake manifold — as much as 15 ft lbs of torque lost!
  • After 6200 rpm is some good news — we begin to see minor gains, based on “peak” numbers, we only got a 6whp gain using the RBC.
  • At ~7150 rpm there is a 7whp gain.
  • At 7500 rpm there is a 11whp gain.

So what can we gather from this? There is a hefty trade off when using this intake manifold on the 2012+ Civic Si. You are basically sacrificing a lot of mid/low end for a powerband that carries better after 6000 rpm.

So pick your poison: what are you using the car for?

Racing? Then technically speaking this car will be a bit faster when keeping the revs above 6000 rpm.

Daily driven stop and go “fun” car? The torque with the stock IM might benefit you more.

The choice is yours — as with everything in life, we do what we do with our toys for our own pleasure and enjoyment.


 

Wait, let’s make a joke and put a huge TB (ZDX/J37) on the car and see what happens?

zdxtb_on_rbcimNow I really have no idea how TB swaps got so popular on bolt on motors. The simple fact is this — items like throttle bodies, injectors (yes I’m looking at the guys claiming RDX injectors are necessary with an RBC IM swap), etc, are nothing more than SUPPORTING modifications, and ONLY benefit you when the motor has a flow requirement that is now surpassed by the items on the car. To say the stock 9th gen throttle body is a restriction on a bolt on 9th is simply a JOKE. The following comparison demonstrates as much. For the marginal gains (1hp) that is had up top with the TB, as much if not more is lost in the mid/low end.

But so and so put a TB on and it pulls so hard…. sorry, please schedule an appointment to have the butt dyno re-calibrated.

Hopefully this has been an insightful test for us all.


 

What’s all this cost?

  • RBC Bored to 70mm for ZDX and CNC Bored for 9th gen injectors – $420
  • PRL RBC Adapter Kit – $135
  • ZDX TB (when purchased as kit option from PRL) – $220
  • PRL SRI – $200
  • Shop labor (if not installing on your own) — 3-4 hours ($240-$320 here)

 

I’d like to give a big thanks to PRL Motorsports for supplying us with all the goodies for this test.

Thanks Ernesto for supplying the test vehicle — enjoy the mods and the tune!