I’m The Best Tooner In The World!

Because I made X amount of power or I made Y amount more power than Joe Bob Smith!

Now that I have your attention, it’s time to get serious.

This blog has been a bit quiet since I’ve been busying moving into the new shop, getting the new 4WD dyno setup operational and all that MoTeC development (more on that another day… you guys following our FB, YouTube & Instagram have probably seen some of it)!

What I wanted to discuss and address today is a small scope of what “tuning” is and what role “making power” plays into it — with some practical examples.

What is Tuning?

A lot of people bring their car in or buy a tune and want to make more power. I have to break it to you — this is the lowest form of tuning. A trained monkey can run a car on a dyno, smash on their laptop and make the dyno graph go up. None of this is any indication the actual calibration (“tune”) was done properly or any intelligent decisions were made.

That’s the biggest part of it — using the dyno (or datalogs, or street, however you’re doing the tune) as a TOOL to make intelligent decisions about how you are going to leave a motor running long term.

Today’s example is brought to you buy a 2013 Civic Si w/ just a Takeda intake. The vehicle runs quiet enough that you can very easily distinguish any scary situations (knock especially) and isn’t so radical that pushing the motor a bit too much will cause damage from a few test pulls (the Honda community has long been spoiled by very strong motors that take abuse for a long time before going BOOM).

Making Power

Something I’ve iterated to people over and over — parts make power. The tune wraps it all up and an intelligent tune will leave the car running SAFE and reliable for a long time. Can a tune make power? You bet. Will a tune make power? Sure. Will the tune make power SAFELY? Um…

I love having our Dynapack at my disposal — I can make minute changes in the tune and see the difference. So let’s take a look at a practical example of making power safely.

All the fueling and VTC were already tuned up to this point and we’re in the “sweet spot” here. On this initial graph we also found a power curve (for the sake of a concise discussion we’re just sticking to the top end of the power curve) t1_morehat’s what we can call “clean” — dyno says the curve is clean, ECU is reporting no knock, and your senses are telling you all is OK. This is the solid curve in the next two graphs and we’ll call it our “baseline“. So let’s try a minuscule change — 1 degree more ignition timing. Hm.. looks like we found 2-3 more hp (dashed curves). But wait… it also knocked on this pull, not only via the knock detection in the ECU — but your ears hear it too. But it’s making power — sure not a lot, but it’s making power!1_less

Well, let’s go the other direction — let’s try 1 degree less. Interesting — now we’re making 2-3 hp less (as much as 4hp less) than our “baseline”.  So if we factor in the “gains” we saw in the previous test, that means we’re now down about 5-6hp on “max power”. Hm… how about we go back to our “baseline” and 1_less_finalgive it a short cooldown (as the engine got a little heat soaked during tuning — this is normal and expected during a session). We’ll compare this pull to our “1 degree less than baseline” pull which arguably for most people is “safe” (more on that later…). and what do we see now? Well crap, we’re down like 6-8hp in some areas. This is a lot of power N/A, especially for a car with just an intake!!! Right? RIGHT?

Wrong.

Decisions. Decisions. Decisions.

This is were some intelligence and decision making comes in. Effectively what we’ve found with just those three pulls is the knock limit, actual audible knock and a spot just under the knock limit. We’ve also proven that you can absolutely make power  while knocking, or at the knock limit, and a small cooldown will make a few more HP.

Keep in mind this is all done in a controlled environment — our conditions have not changed during the session. We’re not seeing varying loads or acceleration rates (someone doing a hard pull getting onto the freeway or down the straight on a road course…). We’re definitely not seeing extreme weather swings (super cold to super hot). What makes “best power” and is “clean” on a dyno today, may be beating the motor up tomorrow… what about if it gets to triple digits outside and the intake is pulling charge temps into the 140*F? Does this change how the motor runs? Does this impact how the tune should “adjust” or “adapt” to these conditions? Absolutely — in fact I have yet to see a single ECU that doesn’t let you build in compensations to ensure the engine runs safe in all conditions. Does this affect the power the motor makes? Absolutely, you can see radical swings in power!

So ask yourself, where SHOULD you leave the motor running? Should you leave it right at the knock limit simply because it didn’t knock in the datalog and your ears didn’t hear any (not every car will be quiet enough for you to hear detonation…). Or is a safe point going to be somewhere that might be what we consider “leaving a lot on the table”?

Hell I only showed the difference two degrees makes… and this may not even be the “safe” spot to leave the car at long term. What if it’s 3-4 degrees of timing under absolutely max power? How much are we “leaving on the table”? Is this necessary to ensure the motor is safe for what the owner of the car is going to be doing?

My job as a reputable tuner is to leave the car running safe for years to come — in all the elements and any conditions. So I know what I would do, and I know exactly why I do what I do.

The Dyno Phenomena

This brings up an interesting point — people get blinded so much by peak power figures on a dyno sheet that they forget what tuning is for. A dyno is a tool and not there so you can race your dyno sheet — it’s a tool to get a job done. You can always “make more power” when loading a car on the dyno, any dyno. Only an incompetent tuner will leave a car running on the knock limit. But hey, if they do — a little while later it was just “bad fuel” that got you, right?

There’s a difference between a proper and correct tune — and “making power”. You’re not uncovering Egypt’s secrets by “making power”. So sad, right?

Bro You’re Running Rich!

I love this topic — it’s probably one of the most common online aside from people racing their dyno sheets online and arguing about “bro that’s low you should be making X power”. LOL.

Yes, LOL.

Although there IS a point where it’s too rich — all motors have a “sweet spot” they like to run in as far as fueling under full load (dependingfueling on fuel). Here’s an example that shows the motor run at 12.2 AFR, 12.8 AFR and 13.5 AFR (roughly). Note the torque curves on the left… almost identical. Fuel curves on the right graph. The timing map remained the same on all 3 pulls, as did VTC. Only variable changed was fueling used. On the orange plot (13.5 afr) we had some light ping — which again did not affect power output.

So what fueling would you run?

Jackson Racing Supercharger on the FT-86 (FR-S/BRZ)

James had us install the Jackson Racing supercharger kit on his BRZ last summer, and now he’s gone for more power and the upgrade to the C38 supercharger that Jackson just released. I had the unique opportunity to do a nice comparison between both units on the standard “low boost” pulley before upgrading the C38 blower to the “high boost” pulley.

This test was done on 92 octane fuel. Our dyno baselines a stock FT86 at 148-150whp (not the typical 170 you see elsewhere).

So after swapping over the C38 blower onto the car, dropping in the 900cc port injectors (you’re going to need an upgraded port injector for the high boost pulley), this is what we got. Solid lines are the C38 blower w/ the standard pulley, c38_lb_vs_c30dashed lines are the C30 blower w/ the standard pulley.

The results were exactly as expected — the low end was basically a wash (slightly lower with the C38 blower — it made the same or a little less pressure ratio, aka “boost”), but the efficiency of the C38 compressor started to shine on the top end, and we had a decent power pick up on the top end over the C30 blower.

On goes the high boost pulley. Internet experts quiver in fear as we swap on this pulley. The world is going to come to a grinding halt with the uber boost levels this pulley makes and is apparently going to make it impossible tohb_vs_lb_c38 run the motor safely at such “extreme” boost levels. Imminent danger to manifold — obviously.

Well I’m going to have to let the experts down on this one… but this “high boost” pulley is perfectly safe to run on pump gas (91, 92 or 93 octane). We actually picked up a solid amount of power through basically the whole curve — as much as 25whp over the low boost pulley @ 7000 rpm — making just shy of 290whp. And yes, it’s perfectly safe to drive. You don’t “need” a built motor to run this power level — or E85 to make it “safe” (but we’ll get to that later..).

c38_hb_vs_c30What’s the overall difference over the C30 blower? I’d say that’s a pretty noticeable difference over the C30 now… almost 50whp gained.

c38_hb_vs_stockAnd to compare it to stock….. lots more power  everywhere. So what do I think? I think our Internet Experts need to do less “blah blah” on their keyboards, and more work in the shop. And I think if you’re looking for a centrifugal setup, this is the way to go — the nice C38 blower with the high boost pulley. I would just skip the standard “low boost” pulley. There is nothing “scary” about this power level and it’s not particularly hard to tune it to be reliable in the hands of a competent tuner — our 290hp is 1.9x more power over a stock FT86, so on a higher reading dyno that baselines an FT86 in the ~170 area, you should be seeing 320hp, or so.

And the info graphic on the boost levels with the blowers. Blue graph is the C30 blower with the standard pulley. Orange is the C38 blower with the standard pulley. Grey is the C38 blower with the high boost pulley.boost_c38_c30

c38_e65Now the awaited E85 update… or in this case, E65 as I only got 10 gallons of E85 into the tank, and it blended with the remaining ~3 gallons of 92 octane. The results are fantastic — the car makes 2.3 times more power than stock, and c38_e65_vs_stockwell over 200whp more than stock at rev limit. The graph to the right are the gains over 92 octane. Graph to the left are the gains over a stock FR-S/BRZ.

With the extra 20% ethanol a full E85 blend would bring, we’d probably pick up another 6-10hp on our dyno. On the more high in the clouds style dynos, this setup is “400hp” 😉

Making Some Real Power on the Toyota FT86 (FRS/BRZ) — Turbo!

Starting the new year out with some bang — been driving around on our boosted 500hp FR-S for a couple months now and dealing with one of the nuances of making more and more power — the need for fuel system upgrades and tweaks. Now it’s time to go over what I’ve done to the car, what options I went with, etc.

The Turbo Kit

01I was very close to building our own turbo kit for the FR-S — however PRL Motorsports had an option available and as I already have a very good relationship with them I decided to give their kit a try after we had some back and forth. I did make a few tweaks based on what I like to run02 on turbo vehicles — making it a little custom “VitTuned” off shoot, but the heart of the kit is their work and fabrication.

Before you say you can’t find it on their site — you’re right, you can’t. You can contact them directly, or myself — and I can help you build the package that’s right for your FT86.

Now getting into it– I chose to run a Comp Turbo CT4X-5862 .82 a/r turbocharger on my car. This is quite a bit larger than what most people run (it’s a large 4″ in, 2.5″ out cover — most kit options will have something like a 3″ 09in and 2″ out cover, which is quite a bit “smaller”). But I knew I was going to shoot for more power — and I just happened to have the turbo sitting on a shelf as well.

Basic fuel system upgrades included a DW300c in tank fuel pump and Deatschwerks 900cc port fuel injectors.

Let’s See Some Power Figures!

4psi_vs_stockOK, enough with the build info — what’s this thing make? I have to say, I was quite impressed with the power output of this motor with this turbo. On 4psi (wastegate pressure) we made roughly 100hp more than stock on 92 octane fuel.

12psi_vs_stockCranking it up to 12psi running a conservative tune for the 92 octane fuel, we were able to hit just shy of 320whp. Quite a solid power figure considering this was more than 2 times stock power and still running on the stock clutch.

Speaking of the stock clutch — when I tried to crank it up a couple weeks later on E40 (40% ethano16.5psil content) it let go. So I put in an ACT 6 puck sprung setup and got back on the dyno with E55 (55% ethanol content). Boy did it make power… 16.5psi made an awesome 450whp, 3 times stock power!

18psiAbout a week later I came back in with E75 in the tank to push it a bit more. Did it pick some more up? You bet, she put down 485 whp without even breaking a sweat at 18psi (3.2x stock power relatively).

But this is where some of our troubles begin… And no, it’s not the motor. I’m happy to report it is currently running smooth and strong.

Oh The Fuel System Woes — Fuel Return Time!

You got it — at this power level the stock returnless fuel system is complete e85_18psimaxed out. As you can see from the following datalog plot — port injector run at 17ms pulse width — this is beyond even 100% “duty cycle”. Since this is a dead head system, I did not have a fuel pressure sensor mounted yet to monitor the fuel pressure — but one can assume it was about 20-25psi “differential pressure” (actual pressure over the injectors), given the PW the ECU was commanding to hit fuel targets.

So it’s time to build a fuel return.

There are a couple ways and already a couple kits out for the platform — some that I don’t particularly like (because, bluntly — the fitment is complete shit). I chose to build a return the same way I have done it on other platforms. Over the course of troubleshooting the fuel system, I also chose to run a new -6 AN feed line in addition to the -6 AN return line. Here is a rough parts break down of the fittings necessary.

  • 3/8″ Straight EFI Hose End
  • -6 AN bulkhead fitting for the top of the bucket.
  • Two 5/16″ EFI Hose Ends
  • -6 AN Male “T” adapter/union
  • Three 90 degree -6 AN Hose Ends
  • Two Straight -6 AN Hose Ends
  • 180 degree -6 AN Hose End
  • 20-30 feet of -6 AN Hose
  • Aeromotive 1:1 Rising Fuel Pressure Regulator
  • VitTuned FPR Blank

The fittings and line were sourced from SummitRacing.com — I used mostly Russell items, with some odd balls dropped in depending on what was in stock (or what I had available already).

I used the stock rails and recommend you do the same (less line and less fittings, better fitment). I had a set of aftermarket rails, they fit terrible, no room to mount the DI computer (which is grounded to the head via the mounting bracket — your car won’t run otherwise), couldn’t clip in one of the injector clips… it was so bad I threw them in the trash.

File_003To give you a verbal description of how the fuel return works — start at the tank. The feFile_001ed comes out into a 3/8″ EFI fitting and goes into the matching hose end. The feed line then snakes into the engine bay and splits with the T fitting.

The T fitting then splits and one end runs into a 5/16″ EFI hose end into the DI pump. The last out on the T runs into the side of the regulator. Then you start at the next regulator side and feed that end into the port injector rail with the remaining 5/16″ EFI hose end — or in my case (as the pictures show) you run this into your flex fuel sensor, and then into tFile_000he rail. Same exact concept though. Side note — you can with a fuel return relocate the flex sensor into the return line. I chose not to do this since I already ran the flex sensor with the dead head fuel system and it was “easier” to leave it in the feed line.

The final line — is the return line off the bottom regulator running back into your tank via the bulkhead fitting.

In the cage itself — you do have to replace the stock regulator with a blank to feed all the fuel into the feed line and towards our external regulator — as the following 3 pictures depict.

File_007File_006File_005

Now some people might debate this choice of blocking off what is known as the “Venturi” feed in the cage itself — and might be concerned about the in tank siphon from one side of the tank to the other on the FT86 platforms. I have been doing fuel returns this way for years when converting dead head fuel systems — it works, and it works great.

Here’s some facts about the Venturi feed — it is NOT designed to work the in tank siphon. The in tank siphon works like any other siphon — gravity and pressure! Simply put, the pressure in the tank will normalize the fuel level between the two sides. I’m not just saying this — I have been driving the car like this, the siphon works perfectly FINE without the Venturi. What the Venturi is designed to do is create a type of vortex/swirl feed at the inlet to the factory cage — this is designed to create a low pressure area that pulls fuel into the cage and helps keep it full during low fuel level conditions in the tank (and works so-so as anyone that’s ever done any aggressive driving on high powered vehicles can tell you — my dead head fuel systems running 100% OEM cages will starve the pump still). This is an effect you ultimately break the moment you use your return to feed the Venturi — under power the return line flows very little fuel and pressure, whereas the OEM Venturi is fed directly by pressure from the pump! With a Walbro 485 in the tank — I can hit it in boost with 1/4 of a tank and still maintain fuel pressure. Ultimately for someone running aggressively at a track event — a surge tank setup with their fuel return is the way to go (no in tank setup will ever be 100% when it comes to avoiding fuel pump starvation).

Se85_15psi_fixedo what did all this work net us? Tons of room on the fuel system — at the normal 15psi boost pressure I run day to day, I have a ton of breathing room to push it harder if I want to in the future. Without the return, I was already at 13ms pulsewidth on the port injector, now I’m not even at 10ms.

Maybe more power in the future? We’ll see…

DynoJet Fudging Tutorial 101

It’s honestly pretty funny how far internet trolls and wannabes that want to take a bite out of you will go. News flash — I’ve been doing this for years and seen all the lies and dyno fudging one ever needs to see that will last a lifetime. Yet these “people” still seem to think tuning is all about power and racing their dyno sheets (fake at that) online.

But sure, I’ll show you how to make 20hp+ on a DynoJet without ever changing a thing and getting the ability to claim “there was so much wrong”. This is really juvenile internet troll behavior — but hey it’s the weekend, let’s spend a little time burning them down.

Start With a Potato Graph Baseline

baseMake it as hard to read any information as possible. For the sake of this blog post though — I want it legible so I won’t go that far. Not a single thing was tuned in the tune for these pulls. Not one. The tune is exactly the same.

Next add in the retune “baseline” graph –more– noting an amazing 18 increase, wow!

But hey we put in some more work, and more_conditions_screwednow the car is making 278hp, an amazing 26hp gain!!!!! WOW!!!

How is this even possible??

Fudging The DynoJet Broken Down

Let me be clear — anyone can fake any dyno to push whatever agenda they want. They’ve been doing it for years, this isn’t anything new.

So how did I get the numbers to go up without changing the tune (I can certainly claim I did and that in the base “everything was wrong”)?

Note how the curves are very similar — it really is the same tune. Very rarely will the overall curve of a “retuned” vehicle follow the same path if it’s a different tune. So the first thing you should note — the graphs are all individual, they are not overlayed. There is no correction factor listed anywhere on those graphs. So let’s shed some light.

base_conditionsHere is the base dyno making “252 whp”, but now with correction factor and smoothing used. We had an overall correction factor of 0.99 which made the numbers lower.

more_conditionsWhat do we have now? This is the “270whp” graph. We’ve switched to the STD correction factor, which is now an overall 1.01 correction — making the numbers read higher.

But that’s not all that’s changed — we also went from gearchangeusing 3rd gear to 4th gear, which “added” 10hp on it’s own, as seen here on the right. Note the “gear ratio” information — higher number is an earlier gear (3rd in this case vs 4th gear). This is not an unusual phenomena — dynos can and will read a bit different based on the gear you use.

But hey, for internet “facts” sharing — we just gained 18hp by fixing a tune that was “so wrong” — LOL?

It gets better. What if we mess with the dyno more_conditions_screwedweather station? Wow, we have an amazing 278whp now! I can leave the correction factor, gear ratio and all other analytical data off, just share these numbers and now I’m the best “tuner” in the world — I just made 26whp over someone else’s tune, without changing anything (but I can certainly claim I did — who’s going to know, right?)!

more_conditions_screwed_conditionsBut if we actually pull up the run conditions, note correction factor now — 1.04. With a very weird humidity… yup, the graph had someone screwing with the weather station. Here’s a news flash as well — it is relative child’s play to screw a DynoJet run, even AFTER it’s been saved. I can do this (or anyone else scam_examplewith basic computer skills) with any DynoJet run file someone sends me — make their graphs read “higher”.

Finally a 1:1 overlay to show you can even fudge a direct comparison if you want to.

And hey, as far as the Internet is concerned — if I post these graphs and just claim the base tune was wrong, who’s going to know, right?

Well I Know. M’Kay?

In conclusion? If you want to make your tooner friend look good, there’s legitimate ways, and then there’s BS ways. Spreading lies and false hope never helped anyone — you just lose any credibility you could of had as you and whatever friend/tooner/shop you are trying to “back up” is clearly a liar with no integrity. But hey, that’s just the game, right? Sure, but I’m not playing.